首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   10篇
  国内免费   11篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   8篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   8篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
1.
Background and Aims: While invasive species may escape from natural enemies in thenew range, the establishment of novel biotic interactions withspecies native to the invaded range can determine their success.Biological control of plant populations can be achieved by manipulationof a species' enemies in the invaded range. Interactions weretherefore investigated between a native parasitic plant andan invasive legume in Mediterranean-type woodlands of SouthAustralia. Methods: The effects of the native stem parasite, Cassytha pubescens,on the introduced host, Cytisus scoparius, and a co-occurringnative host, Leptospermum myrsinoides, were compared. The hypothesisthat the parasitic plant would have a greater impact on theintroduced host than the native host was tested. In a fieldstudy, photosynthesis, growth and survival of hosts and parasitewere examined. Key Results: As predicted, Cassytha had greater impacts on the introducedhost than the native host. Dead Cytisus were associated withdense Cassytha infections but mortality of Leptospermum wasnot correlated with parasite infection. Cassytha infection reducedthe photosynthetic rates of both hosts. Infected Cytisus showedslower recovery of photosystem II efficiency, lower transpirationrates and reduced photosynthetic biomass in comparison withuninfected plants. Parasite photosynthetic rates and growthrates were higher when growing on the introduced host Cytisus,than on Leptospermum. Conclusions: Infection by a native parasitic plant had strong negative effectson the physiology and above-ground biomass allocation of anintroduced species and was correlated with increased plant mortality.The greater impact of the parasite on the introduced host maybe due to either the greater resources that this host providesor increased resistance to infection by the native host. Thisdisparity of effects between introduced host and native hostindicates the potential for Cassytha to be exploited as a controltool.  相似文献   
2.
The effect of substances with different redox potentials in the phytochrome-controlled germination of Paulmtnia tomentosa seeds was examined. Up to 25% of water-imbibed seeds germinated upon irradiation with 5 min red light The seeds irradiated with 5 min red light and incubated in substances with redox potentials equal or higher than E'0= 360 mV [potassium nitrate, potassium hexacyanoferrate (III) or potassium hexachloroiridate (IV)] and sodium nitroprusside germinated up to 80%. The optimal concentration was between 1 and 10 mM. Other electron acceptors such as 2.6-dichlorophenol-indoplhenol, phenazine methosulfate and methylene blue failed to produce and effect. The germination-promoting effect was obtained when the substances were supplied to the incubation medium from the onset of imbibition or at the onset of irradiation. Delay of application of these chemicals until after the red light treatment diminished their effectiveness and the effect was lost after 48 h. The escape from far-red reversibility was evident in the presence of substances which stimulated germination. The results presented support the view that phytochrome-broken dormancy of Paulownia tomentosa seeds is closely connected with redox changes.  相似文献   
3.
During the survey of two successive years 2012–2013, in nearby places of Gorakhpur districts, Uttar Pradesh, India, Arundo donax plants were found to be exhibiting witches’ broom, excessive branching accompanied with little leaf symptoms with considerable disease incidence. Nested PCR carried out with universal primers pair R16F2n/R16R2 employing the PCR (P1/P7) product as a template DNA (1:20) resulted in expected size positive amplification ~1.2 kb in all symptom-bearing plants suggested the association of phytoplasma with witches’ broom disease of Narkat plants. BLASTn analysis of the 16S rRNA gene sequence showed the highest (99%) sequence identity with Candidatus phytoplasma asteris (16SrI group). In phylogenetic analysis, the sequence data showed close relationships with the members of 16SrI phytoplasma and clustered within a single clade of 16SrI group and closed to B subgroup representatives. This is a first report of 16Sr I-B group phytoplasma associated with witches’ broom accompanied with little leaf disease of Narkat in India.  相似文献   
4.
The familial placements of Cyrtandromoea Zoll. and Wightia Wall., two small and enigmatic South‐East Asian genera, have long been controversial in Lamiales. Here we adopt a two‐step approach to resolve their phylogenetic relationships. We initially reconstructed a large‐scale phylogeny of Lamiales using six chloroplast markers (atpB, matK, ndhF, psbBTNH, rbcL, and rps4). The results showed that both Cyrtandromoea and Wightia emerged in the LMPO clade, including Lamiaceae, Mazaceae, Phrymaceae, Paulowniaceae, and Orobanchaceae. Based on the second set of six chloroplast markers (atpB, matK, ndhF, rbcL, rps16, and trnL‐F) and two nuclear ribosomal regions (external transcribed spacer and internal transcribed spacer) for the analyses focusing on the LMPO clade, our results revealed that Cyrtandromoea was consistently nested within Phrymaceae, whereas Wightia was supported as sister to Phrymaceae by the chloroplast DNA dataset or sister to Paulowniaceae by the nuclear ribosomal DNA dataset. Morphological and anatomical evidence fully supports the inclusion of Cyrtandromoea in Phrymaceae, and an updated tribal classification is done for Phrymaceae with five tribes, that is, Cyrtandromoeeae Bo Li, Bing Liu, Su Liu & Y. H. Tan, trib. nov., Diplaceae Bo Li, Bing Liu, Su Liu & Y. H. Tan, trib. nov., Leucocarpeae, Mimuleae, and Phrymeae. The conflicting phylogenetic position of Wightia indicated by different genome markers results in difficulty placing the genus in either Phrymaceae or Paulowniaceae. Considering the distinct morphological differences between Wightia and other families in the LMPO clade, we here propose a new family, Wightiaceae Bo Li, Bing Liu, Su Liu & Y. H. Tan, fam. nov., to accommodate it, which is the 26th family recognized in Lamiales.  相似文献   
5.
Determining the best management practices for plant invasions is a critical, but often elusive goal. Invasive removals frequently involve complex and poorly understood biotic interactions. For example, invasive species can leave potent legacies that influence the success of native species restoration efforts, and positive plant‐microbial feedbacks may promote continued reinvasion by an exotic species following restoration. Removal methods can vary in their effects on plant–soil feedbacks, with consequences for restoration of native species. We determined the effects of invasion by a leguminous shrub (French broom; Genista monspessulana) on the density and community composition of, and benefit conferred by, its microbial mutualists in its invading range. Densities of soil‐dwelling rhizobia were much higher in areas invaded by G. monspessulana relative to uninvaded areas, and this increased density of rhizobia fed back to increase seedling growth of both the invader and native legumes. We further compared how three techniques for removing G. monspessulana affected the densities of rhizobia relative to areas where G. monspessulana was still present. Removal by hand‐pulling reduced soil rhizobial densities, and reduced growth of one native legume, while having no effect on the growth of the invader. Overall, our results show that the consequences of restoration techniques, both above‐ and belowground, could be critical for the successful removal of an invasive legume and restoration of native species.  相似文献   
6.
In weed biocontrol, there is a need for pre-release efficacy assessments for potential agents. Genista monspessulana ((L.) L. A. S. Johnson (Fabaceae), French broom) is an invasive perennial shrub in the western U.S. The galling weevil Lepidapion argentatum Gerstaecker is a potential biocontrol agent. The impact of increasing weevil density on galling damage, plant height, width, leaf damage, and relative growth rate (RGR) was assessed in greenhouse experiments on two to three-month-old seedlings infested with either one or three weevils. Infestation by three female weevils caused 48% more galls producing 27% more larvae than did infestation with one female while causing only 1% leaf damage and no difference in total leaf area. Infestation with multiple weevils caused a 55% and 29% decrease in plant height and canopy width respectively, while single-weevil infestation decreased height by 32% and width to the same degree as for multiple weevils. The RGR of seedlings infested with three weevils was three times slower than the controls, while growth was reduced 2-fold by single-weevil infestation. Reductions in plant size and growth rate induced by weevil galling could reduce plant competitive survival to reproduction and also plant population dispersal as seedlings. Our results suggest that L. argentatum has the potential to cause impact to French broom seedlings if released in the invasive range.  相似文献   
7.
Scotch broom (Cytisus scoparius (L.) Link) is a European shrub that has naturalised in several countries worldwide and is recognised as an invasive weed in much of western North America. The mite Aceria genistae (Nalepa) is a coevolved, gall-inducing herbivore associated with Scotch broom in its native range and has been intentionally introduced as a classical weed biological control agent of C. scoparius in Australia and New Zealand. An adventive, never intentionally introduced, population of A. genistae was discovered in Washington and Oregon, U.S.A. in 2005. Surveys for A. genistae in California resulted in the discovery of the gall mite in 11 counties, with a widely scattered distribution. Molecular and morphological assessments confirm the mites collected from galls in California are A. genistae. Whether natural or anthropogenic, the estimated rate of long range dispersal for A. genistae from Washington or Oregon to California ranges from 39 to 62?km/yr. Niche model predictions indicate that A. genistae will continue to expand its distribution throughout much of the Scotch broom-invaded lands of California but areas supporting the weed in the Eastern U.S.A. appear less suitable. Modelling evidence also indicates that portions of Chile and Argentina are suitable for colonisation by A. genistae, also suggesting that expansion of the mite is possible in areas of Tasmania, southeastern Australia, and New Zealand where the mite was released. The environmental safety of A. genistae in relation to non-target plants and the influence of herbivory on Scotch broom fitness are discussed.  相似文献   
8.
Nonnative conifers are widespread in the southern hemisphere, where their use as plantation species has led to adverse ecosystem impacts sometimes intensified by invasion. Mechanical removal is a common strategy used to reduce or eliminate the negative impacts of nonnative conifers, and encourage native regeneration. However, a variety of factors may preclude active ecological restoration following removal. As a result, passive restoration – unassisted natural vegetation regeneration – is common following conifer removal. We asked, ‘what is the response of understorey cover to removal of nonnative conifer stands followed by passive restoration?' We sampled understorey cover in three site types: two‐ to ten‐year‐old clearcuts, native forest and current plantations. We then grouped understorey species by origin (native/nonnative) and growth form, and compared proportion and per cent cover of these groups as well as of bare ground and litter between the three site types. For clearcuts, we also analysed the effect of time since clearcut on the studied variables. We found that clearcuts had a significantly higher average proportion of nonnative understorey vegetation cover than native forest sites, where nonnative vegetation was nearly absent. The understorey of clearcut sites also averaged more overall vegetation cover and more nonnative vegetation cover (in particular nonnative shrubs and herbaceous species) than either plantation or native forest sites. Notably, 99% of nonnative shrub cover in clearcuts was the invasive nonnative species Scotch broom (Cytisus scoparius). After ten years of passive recovery since clearcutting, the proportion of understorey vegetation cover that is native has not increased and remains far below the proportion observed in native forest sites. Reduced natural regeneration capacity of the native ecosystem, presence of invasive species in the surrounding landscape and land‐use legacies from plantation forestry may inhibit native vegetation recovery and benefit opportunistic invasives, limiting the effectiveness of passive restoration in this context. Abstract in Spanish is available with online material.  相似文献   
9.
Aciculosporium take (Ascomycota; Clavicipitaceae), causes the witches' broom disease in bamboo, particularly Phyllostachys bambusoides. Since it was observed that endogenous indole-3-acetic acid is reduced in the twigs of the diseased bamboo, the symptoms (bushy appearance) may be induced by reduction in auxin levels. Furthermore, two indolic compounds accumulated in diseased twigs, these being identified as N-p-coumaroylserotonin and N-feruloylserotonin by LC-MS, 1H NMR and 13C NMR spectroscopic analyses. N-p-Coumaroylserotonin possesses antifungal activity against A. take.  相似文献   
10.
The peanut witches'' broom (PnWB) phytoplasma causes virescence symptoms such as phyllody (leafy flower) in infected peanuts. However, the obligate nature of phytoplasma limits the study of host-pathogen interactions, and the detailed anatomy of PnWB-infected plants has yet to be reported. Here, we demonstrate that 4′,6′-diamidino-2-phenylindole (DAPI) staining can be used to track PnWB infection. The DAPI-stained phytoplasma cells were observed in phloem/internal phloem tissues, and changes in vascular bundle morphology, including increasing pith rays and thinner cell walls in the xylem, were found. We also discerned the cell types comprising PnWB in infected sieve tube members. These results suggest that the presence of PnWB in phloem tissue facilitates the transmission of phytoplasma via sap-feeding insect vectors. In addition, PnWB in sieve tube members and changes in vascular bundle morphology might strongly promote the ability of phytoplasmas to assimilate nutrients. These data will help further an understanding of the obligate life cycle and host-pathogen interactions of phytoplasma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号